National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Molecular basis of selected inherited rare diseases
Hartmannová, Hana
Rare diseases represent a clinically and genetically heterogeneous group of diseases affecting various organs and presenting at different ages. Identification and functional characterization of genetic defects causing individual rare diseases represent unique opportunity to understand biological functions of human genes and gene products as well as to basic pathogenetic mechanisms of individual diseases. This knowledge is prerequisite for their effective diagnosis, specific treatment and prevention and it also opens up an avenue for better understanding of complex diseases. My thesis documents basic conceptual and methodological developments of biochemical genetics, functional cloning, genetic mapping, positional cloning, DNA microarrays and genomic sequencing, which have provided a universal framework for effective characterization of the genetic architecture of almost all human diseases. This conceptual and technological developments are demonstrated on several cases of rare genetic diseases - adenylosuccinate lyase deficiency, mucopolysacharidosis type IIIC, Rotor syndrome, deficiency of ATP synthase, neuronal ceroid lipofuscinosis, GAPO syndrome and X -linked restrictive cardiomyopathy, which genetic and molecular basis I have helped to elucidate.
Current methods of genome analysis and their use in identification of genetic determinants of human diseases
Stránecký, Viktor ; Kmoch, Stanislav (advisor) ; Kleibl, Zdeněk (referee) ; Pačes, Jan (referee)
The study of rare genetic diseases presents unique opportunity to uncover the genetic and molecular basis of human traits and greatly helped to the identification of genes, to the elucidation of their function and to the characterization of metabolic pathways and cellular processes. Over the past decades, linkage analysis has been appropriate approach to search for the genes causing Mendelian diseases and contributed to the identification of many genes, but the genetic cause of many diseases remains unknown. New methods of studying the human genome, microarray technology and massively parallel sequencing (next generation sequencing), represent a way to efficiently identify the cause of genetically determined diseases, based on direct observation of mutations in the genome of affected individuals. These techniques replaced the traditional method of disease gene identification represented by linkage analysis and sequencing of candidate genes and have become the standard approach to elucidate the molecular basis of diseases. In this work, i describe the the results achieved by using these methods - identification of the genes underlying mucopolysacharidosis type IIIC, isolated defect of ATP synthase, Rotor syndrome, autosomal dominat ANCL and GAPO syndrome.
Molecular basis of selected inherited rare diseases
Hartmannová, Hana
Rare diseases represent a clinically and genetically heterogeneous group of diseases affecting various organs and presenting at different ages. Identification and functional characterization of genetic defects causing individual rare diseases represent unique opportunity to understand biological functions of human genes and gene products as well as to basic pathogenetic mechanisms of individual diseases. This knowledge is prerequisite for their effective diagnosis, specific treatment and prevention and it also opens up an avenue for better understanding of complex diseases. My thesis documents basic conceptual and methodological developments of biochemical genetics, functional cloning, genetic mapping, positional cloning, DNA microarrays and genomic sequencing, which have provided a universal framework for effective characterization of the genetic architecture of almost all human diseases. This conceptual and technological developments are demonstrated on several cases of rare genetic diseases - adenylosuccinate lyase deficiency, mucopolysacharidosis type IIIC, Rotor syndrome, deficiency of ATP synthase, neuronal ceroid lipofuscinosis, GAPO syndrome and X -linked restrictive cardiomyopathy, which genetic and molecular basis I have helped to elucidate.
Current methods of genome analysis and their use in identification of genetic determinants of human diseases
Stránecký, Viktor ; Kmoch, Stanislav (advisor) ; Kleibl, Zdeněk (referee) ; Pačes, Jan (referee)
The study of rare genetic diseases presents unique opportunity to uncover the genetic and molecular basis of human traits and greatly helped to the identification of genes, to the elucidation of their function and to the characterization of metabolic pathways and cellular processes. Over the past decades, linkage analysis has been appropriate approach to search for the genes causing Mendelian diseases and contributed to the identification of many genes, but the genetic cause of many diseases remains unknown. New methods of studying the human genome, microarray technology and massively parallel sequencing (next generation sequencing), represent a way to efficiently identify the cause of genetically determined diseases, based on direct observation of mutations in the genome of affected individuals. These techniques replaced the traditional method of disease gene identification represented by linkage analysis and sequencing of candidate genes and have become the standard approach to elucidate the molecular basis of diseases. In this work, i describe the the results achieved by using these methods - identification of the genes underlying mucopolysacharidosis type IIIC, isolated defect of ATP synthase, Rotor syndrome, autosomal dominat ANCL and GAPO syndrome.
Molecular basis of selected inherited rare diseases
Hartmannová, Hana ; Kmoch, Stanislav (advisor) ; Krebsová, Alice (referee) ; Živný, Jan (referee)
Rare diseases represent a clinically and genetically heterogeneous group of diseases affecting various organs and presenting at different ages. Identification and functional characterization of genetic defects causing individual rare diseases represent unique opportunity to understand biological functions of human genes and gene products as well as to basic pathogenetic mechanisms of individual diseases. This knowledge is prerequisite for their effective diagnosis, specific treatment and prevention and it also opens up an avenue for better understanding of complex diseases. My thesis documents basic conceptual and methodological developments of biochemical genetics, functional cloning, genetic mapping, positional cloning, DNA microarrays and genomic sequencing, which have provided a universal framework for effective characterization of the genetic architecture of almost all human diseases. This conceptual and technological developments are demonstrated on several cases of rare genetic diseases - adenylosuccinate lyase deficiency, mucopolysacharidosis type IIIC, Rotor syndrome, deficiency of ATP synthase, neuronal ceroid lipofuscinosis, GAPO syndrome and X -linked restrictive cardiomyopathy, which genetic and molecular basis I have helped to elucidate.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.